Percolation Theory in Solid Oxide Fuel Cell Composite Electrodes with a Mixed Electronic and Ionic Conductor

نویسندگان

  • Daifen Chen
  • Huanhuan He
  • Donghui Zhang
  • Hanzhi Wang
چکیده

Percolation theory is generalized to predict the effective properties of specific solid oxide fuel cell composite electrodes, which consist of a pure ion conducting material (e.g., YSZ or GDC) and a mixed electron and ion conducting material (e.g., LSCF, LSCM or CeO2). The investigated properties include the probabilities of an LSCF particle belonging to the electron and ion conducting paths, percolated three-phase-boundary electrochemical reaction sites, which are based on different assumptions, the exposed LSCF surface electrochemical reaction sites and the revised expressions for the inter-particle ionic conductivities among LSCF and YSZ materials. The effects of the microstructure parameters, such as the volume fraction of the LSCF material, the particle size distributions of both the LSCF and YSZ materials (i.e., the mean particle radii and the non-dimensional standard deviations, which represent the particle size distributions) and the porosity are studied. Finally, all of the calculated results are presented in non-dimensional forms to provide generality for practical application. Based on these results, the relevant properties can be easily evaluated, and the microstructure parameters and intrinsic properties of each material are specified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to microstructure optimization of solid oxide fuel cell electrodes

Designing optimal microstructures for solid oxide fuel cell (SOFC) electrodes is complicated due to the multitude of electro-chemo-physical phenomena taking place simultaneously that directly affect working conditions of a SOFC electrode and its performance. In this study, a new design paradigm is presented to obtain a balance between electrochemical sites in the form of triple phase boundary (...

متن کامل

Ionic Conducting Composite as Electrolyte for Low Temperature Solid Oxide Fuel Cells

........................................................................................................................ I LIST OF PAPERS .............................................................................................................. II TABLE OF CONTENTS ................................................................................................. VII 1 INTRODUCTION ............

متن کامل

Quantifying the Role of Cerium Oxide as a Catalyst in Solid Oxide Fuel Cell Anodes

Title of Document: QUANTIFYING THE ROLE OF CERIUM OXIDE AS A CATALYST IN SOLID OXIDE FUEL CELL ANODES Steven C. DeCaluwe, Doctor of Philosophy, 2009 Directed By: Associate Professor Gregory S. Jackson, Department of Mechanical Engineering Solid Oxide Fuel Cells (SOFCs) are an important electrochemical power conversion device, due largely to their high efficiencies and ability to directly oxidiz...

متن کامل

The Effect of cathode Porosity on Solid Oxide Fuel Cell Performance

In the present study, the effect of porosity on the cathode microstructure (50:50 wt. % LSM: YSZ) of a Solid Oxide Fuel Cell (SOFC) has been examined. A 3-D finite element method for Mixed Ionic and Electronic Conducting Cathodes (MIEC) is presented to study the effects of porosity on cell performance. Each microstructure was realized using the Monte Carlo approach with the isotropic type of gr...

متن کامل

The Effect of cathode Porosity on Solid Oxide Fuel Cell Performance

In the present study, the effect of porosity on the cathode microstructure (50:50 wt. % LSM: YSZ) of a Solid Oxide Fuel Cell (SOFC) has been examined. A 3-D finite element method for Mixed Ionic and Electronic Conducting Cathodes (MIEC) is presented to study the effects of porosity on cell performance. Each microstructure was realized using the Monte Carlo approach with the isotropic type o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013